Zhan-Hui Zhang*, Jian-Jiong Li, Yuan-Zhe Gao and Yu-Heng Liu
The College of Chemistry \& Material Science, Hebei Normal University, Shijiazhuang 050091, P. R. China
E-mail: Zhanhui@126.com
Received November 24, 2006

Abstract

Iodine was found to be an efficient catalyst for the synthesis of 2-substituted benzimidazoles by the condensation of orthoesters and 1,2-phenylenediamines in good to excellent yields under mild reaction conditions.

J. Heterocyclic Chem., 44, 1509 (2007).

INTRODUCTION

The 2-substituted benzimidazole derivatives are important heterocyclic compounds, which exhibit a diverse range of biological properties such as antiviral, antitumour, antibacterial and anti-inflammatory activities [1]. They have also been used as ligands for asymmetric catalysis [2] and act as ligands to transition metals for modeling biological systems [3]. Therefore, the synthesis of this type of compounds has attracted considerable attention. Synthetic routes that are common to the preparation of these heterocycles typically involve the reaction of a carboxylic acid and its derivative with an appropriate 1,2-phenylenediamine in the presence of strong acid at elevated temperature [4]. Another alternative approach is the condensation of aldehydes with 1,2-phenylenediamine [5]. Some methods using transition metal catalyzed coupling reactions to construct the benzimidazole nucleus have also been reported. Those involved a palladium-catalyzed intramolecular N arylation of (o-bromophenyl)amidine [6]. A method starting from 1,2-phenylenediamine and orthoester in the presence of KSF clay [7], Zeolite [8], or $\mathrm{Yb}(\mathrm{OTf})_{3}$ [9] at high temperature has been developed for the synthesis of benzimidazole derivatives. However, many of these procedures are associated with several drawbacks such as expensive reagents, harsh reaction conditions, extended reaction times, occurrence of side products, unsatisfactory yields and complicated experimental procedure. Therefore, there is a need to develop a convenient, efficient and practically useful process for the synthesis 2substituted benzimidazole derivatives

Recently, the use of molecular iodine as an inexpensive, nontoxic, readily available, environmentally benign catalyst for various organic transformations has received considerable attention [10-11]. As part of our ongoing program in developing various new synthetic transformations using cheap and eco-friendly materials as catalysts [12], we report herein a convenient and facile
synthesis of 2-substituted benzimidazole derivatives from 1,2-phenylenediamine and orthoester using a catalytic amount of iodine at room temperature (Scheme I).

RESULTS AND DISCUSSION

In preliminary study, we investigate the reaction of 1,2phenylenediamines (1.0 mmol) and triethyl orthoformate (1.2 mmol) in $\mathrm{CH}_{3} \mathrm{CN}$ in the presence of a catalytic amount of $\mathrm{I}_{2}(10 \mathrm{~mol} \%)$ at room temperature. To our delight, the product 3a was formed and the complete conversion with 98% isolated yield was observed after 15 minutes. Further studies showed that $\mathrm{CH}_{3} \mathrm{CN}$ was the best solvent among the solvents (MeOH, EtOH, THF, DMF, DMSO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, 2-methoxyethanol). Next, we examined the catalytic requirement of $\mathrm{I}_{2}(5-20 \mathrm{~mol} \%)$ for the reaction in $\mathrm{CH}_{3} \mathrm{CN}$. Gratifyingly, $10 \mathrm{~mol} \% \mathrm{I}_{2}$ was sufficient to catalyzed the reaction. A rate enhancement with high yield was observed when higher molar ratios of I_{2}. However, no product formation was observed in the absence of I_{2}.

To evaluate the generality of this method, we next investigated the scope and limitation of this reaction under optimized conditions $\left(\mathrm{CH}_{3} \mathrm{CN}, 10 \mathrm{~mol} \%\right.$ of I_{2}, r.t) and the results are summarized in Table 1 . As shown in Table 1, a variety of structurally diverse 1,2-phenylenediamines and orthoesters underwent the condensation reaction smoothly to afford the corresponding 2 substituted benzimidazole derivatives in high to excellent yields. The electronic property of the substituents on the aromatic ring of 1,2-phenylenediamines had an obvious effect on the yields under the current reaction conditions.

In general, when the R represented the electronwithdrawing groups such as chloro (Table 1, entries m-o) and nitro (Table 1, entries $\mathbf{p}-\mathbf{s}$), the yields and purities of the products were obviously worse, and long reaction times were required. All of the 2 -substituted benzimidazole derivatives have been characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and IR spectra, and the known compounds were confirmed by comparison of their spectral data and melting points with those reported in the literature.

EXPERIMENTAL

Melting points were recorded on X-4 apparatus. IR spectra were obtained using Shimadzu FTIR-8900 spectrometer instrument. NMR spectra were taken with a varain Mercury Plus 400 spectrometer. Mass spectra were performed on a ThermoFinnigan LCQ Advantage instrument with an ESI source (4.5 KeV). Elemental analyses were carried out on Vario EL III CHNOS Elemental Analyzer.

Table 1
I_{2}-catalyzed Synthesis of 2-Substituted Benzimidazole Derivatives

Entry	R	R^{1}	R^{2}	Time (min)	Yield (\%) ${ }^{\text {a }}$	$\mathrm{Mp}\left({ }^{\circ} \mathrm{C}\right)$	Lit. Mp ($\left.{ }^{(} \mathrm{C}\right)$	Ref.
a	H	H	$\mathrm{CH}_{3} \mathrm{CH}_{2}$	15	98	172-173	172-173	8
b	H	CH_{3}	CH_{3}	16	95	175-176	175-176	8
c	H	$\mathrm{CH}_{3} \mathrm{CH}_{2}$	$\mathrm{CH}_{3} \mathrm{CH}_{2}$	15	94	174-175	170-172	8
d	H	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3}$	CH_{3}	12	93	149-150	150	13
e	3-Me	H	$\mathrm{CH}_{3} \mathrm{CH}_{2}$	30	88	145-146		
f	3-Me	CH_{3}	CH_{3}	28	86	166-167		
g	4-Me	H	$\mathrm{CH}_{3} \mathrm{CH}_{2}$	20	93	114-115	115-116	9
h	4-Me	CH_{3}	CH_{3}	18	90	203-204	201-203	9
i	4-Me	$\mathrm{CH}_{3} \mathrm{CH}_{2}$	$\mathrm{CH}_{3} \mathrm{CH}_{2}$	15	92	164-165	163-164	9
j	4,5-Me ${ }_{2}$	H	$\mathrm{CH}_{3} \mathrm{CH}_{2}$	40	93	201-202	203-205	7
k	4,5-Me ${ }_{2}$	CH_{3}	CH_{3}	35	90	239-240	239-240	7
1	4,5-Me ${ }_{2}$	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3}$	CH_{3}	30	92	115-116	116	14
m	$4-\mathrm{Cl}$	H	$\mathrm{CH}_{3} \mathrm{CH}_{2}$	80	82	125-126	123-126	8
n	4-Cl	CH_{3}	CH_{3}	80	86	200-201	199-200	8
0	$4-\mathrm{Cl}$	$\mathrm{CH}_{3} \mathrm{CH}_{2}$	$\mathrm{CH}_{3} \mathrm{CH}_{2}$	70	88	168-170	170-171	8
p	$4-\mathrm{NO}_{2}$	H	$\mathrm{CH}_{3} \mathrm{CH}_{2}$	150	87	201-202	206-208	9
q	$4-\mathrm{NO}_{2}$	CH_{3}	CH_{3}	120	86	227-228	218-221	9
r	$4-\mathrm{NO}_{2}$	$\mathrm{CH}_{3} \mathrm{CH}_{2}$	$\mathrm{CH}_{3} \mathrm{CH}_{2}$	120	84	181-182	178-179	15
S	$4-\mathrm{NO}_{2}$	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3}$	CH_{3}	120	88	138-140	139-141	16

${ }^{a}$ Isolated yields after coloumn chromatography.

This reaction was further explored for the synthesis of bis-benzimidazole compound 5 by the reaction of 3,3'diaminobenzidine $\mathbf{4}$ and two equivalents of triethyl orthovalerate under similar conditions. Compound 5 was obtained in excellent yield (Scheme II).

In conclusion, we have developed a rapid, mild and efficient route for the synthesis of 2 -substituted benzimidazole derivatives by condensation of various 1,2phenylenediamines with orthoesters at room temperature using I_{2} as a novel catalyst. The advantages of current protocol include high efficiency, good substrate generality, the use of inexpensive and environmentally benign catalyst under mild conditions, and experimentally operational ease.

General Procedure for the synthesis of 2 -substituted benzimidazole derivatives (3). A mixture of 1,2phenylenediamine (1 mmol), orthoester $(1.2 \mathrm{mmol})$ and $\mathrm{I}_{2}(0.1$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{ml})$ was stirred at room temperature. The completion of reaction was followed by TLC. After completion, water was added and the product was extracted with ethyl acetate. The organic layer was separated, dried over anhydrous sodium sulphate and the solvent evaporated under reduced pressure to afford the crude product. The crude product was subjected to column chromatography over silica gel using hexane/ethyl acetate as eluent to obtain pure product.

Benzimidazole (3a). This compound was obtained as pale yellow solid; ir (KBr): 3415, 1619, 1482, 1438, 1297, 1262, 1156, 1006, 882, $741 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.30-$ 7.33 (m, 2H), 7.68-7.71 (m, 2H), 8.18 (s, 1H); ESI-MS: 119 $(\mathrm{M}+1)^{+}$.
2-Methylbenzimidazole (3b). This compound was obtained as pale yellow solid; ir (KBr): 3417, 2995, 1622, 1556, 1450, $1360,1271,1218,1043,1003,834,737 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 2.65(\mathrm{~s}, 3 \mathrm{H}), 7.21-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.56(\mathrm{~m}, 2 \mathrm{H})$, 7.81 (s, 1H); ESI-MS: $133(\mathrm{M}+1)^{+}$.

2-Ethylbenzimidazole (3c). This compound was obtained as pale yellow solid; ir (KBr): 3417, 2974, 1619, 1542, 1426, 1271, 1220, 1156, 1043, 965, 880, $742 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 1.44(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.98(\mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.20-7.25 (m, 2H), 7.54-7.56 (m, 2H), 9.97 (s, 1H); ESI-MS: $147(\mathrm{M}+1)^{+}$.

2-Butylbenzimidazole (3d). This compound was obtained as pale yellow solid; ir (KBr): 3414, 2929, 1622, 1534, 1417, 1274, 1153, 1101, 1029, 930, 880, $751 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}(400 \mathrm{MHz}$, CDCl_{3}): $\delta 0.90(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.39$ (sext, J $=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.83 (quin, J = $7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.92 (t, J = $7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.19-7.23$ $(\mathrm{m}, 2 \mathrm{H}), 7.53-7.56(\mathrm{~m}, 2 \mathrm{H}), 9.01(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) δ 13.67, 22.41, 29.06, 30.43, 114.58, 122.07, 138.59, 155.62; ESI-MS: $175(\mathrm{M}+1)^{+}$; Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2}$: C, 75.82 ; H, 8.10; N, 16.08. Found: C, 75.96; H, 8.31; N, 15.92.

4-Methylbenzimidazole (3e). This compound was obtained as pale yellow solid; ir (KBr): 3414, 2990, 2926, 1616, 1485, 1450, 1400, 1297, 1249, 1168, $948 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 2.02(\mathrm{~s}, 3 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, \mathrm{J}=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 10.90(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)): $\delta 17.39,112.74,123.26,123.55$, 126.18, 136.96, 137.86, 140.34; ESI-MS: 133 (M+1)+; Anal. Calcd. for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2}$: C, 72.70; H, 6.10; N, 21.20. Found: C, 72.98; H, 6.25; N, 21.05.

2-Ethyl-4-methylbenzimidazole (3f). This compound was obtained as pale yellow solid; ir (KBr): 3340, 2716, 2606, 1572, $1413,1225,1159,1024,865 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $1.42(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.08(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, \mathrm{~J}=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 10.00(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)): $\delta 12.83$, 17.37, 22.62, 112.12, 122.76, 123.36, 124.87, 137.45, 137.50, 155.75; ESI-MS: $161(\mathrm{M}+1)^{+}$; Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2}$: C, 74.97 ; H, 7.55; N, 17.48. Found: C, 75.05; H, 7.68; N, 17.26.

5-Methylbenzimidazole (3g). This compound was obtained as pale yellow solid; ir (KBr): 3413, 3016, 2802, 1619, 1476, 1444, 1281, 1248, 1164, 1001, 880, $808 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 2.47(\mathrm{~s}, 3 \mathrm{H}), 7.12(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H})$, 7.56 (d, J = $7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 8.04 ($\mathrm{s}, 1 \mathrm{H}$), 9.04 (s, 1H); ESI-MS: 133 $(\mathrm{M}+1)^{+}$.

2,5-Dimethylbenzimidazole (3h). This compound was obtained as pale yellow solid; ir (KBr): 3417, 2913, 2774, 1630, 1553, 1483, 1401, 1281, 1143, 1029, 881, $804 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}(400$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 7.03(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.41(\mathrm{~s}, 1 \mathrm{H})$; ESIMS: $147(\mathrm{M}+1)^{+}$.

2-Ethyl-5-methylbenzimidazole (3i). This compound was obtained as pale yellow solid; ir (KBr): 3426, 2972, 2730, 1632, 1549, 1411, 1317, 1276, 1140, 1069, 1040, 971, 863, $807 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ $\mathrm{nmr}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.42(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$, $2.95(\mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H})$, 7.44 (d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~s}, 1 \mathrm{H})$; ESI-MS: $161(\mathrm{M}+1)^{+}$.
$\mathbf{5 , 6}$-Dimethylbenzimidazole ($\mathbf{3} \mathbf{j}$). This compound was obtained as pale yellow solid; ir (KBr): 3467, 2758, 1712, 1470, 1445, 1406, 1335, 1304, 1268, 1157, 1025, 998, $961 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ $\mathrm{nmr}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 2.37$ (s, 6H), 7.42 (s, 2H), 7.95 (s , $1 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H})$; ESI-MS: $147(\mathrm{M}+1)^{+}$.

2,5,6-Trimethylbenzimidazole ($\mathbf{3 k}$). This compound was obtained as pale yellow solid; ir (KBr): 3378, 2919, 1632, 1540, 1452, 1389, 1306, 1231, 1161, 1022, 1000, $854 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.31(\mathrm{~s}, 6 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 7.35(\mathrm{~s}, 2 \mathrm{H})$; ESI-MS: $161(\mathrm{M}+1)^{+}$.

2-Butyl-5,6-dimethylbenzimidazole (31). This compound was obtained as pale yellow solid; ir (KBr): 3452, 2959, 2929, $1630,1539,1440,1305,1195,1160,1085,1020,997,976,847$ cm^{-1}; ${ }^{1} \mathrm{H} \mathrm{nmr}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.86(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H})$, 1.37 (sext, J = $7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 1.81 (quin, J = $7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.33 (s, $6 \mathrm{H}), 2.91(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~s}, 2 \mathrm{H}), 10.49(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.93,20.49,22.64,29.26,30.71$,
115.00, 130.99, 137.32, 154.90; ESI-MS: $203(\mathrm{M}+1)^{+}$. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2}$: C, 77.18; H, 8.97; N, 13.85. Found: C, 77.32; H, 9.05; N, 13.69.

4-Chlorobenzimidazole ($\mathbf{3 m}$). This compound was obtained as yellow solid; ir (KBr): 3442, 1626, 1582, 1461, 1287, 1150, 1056, 952, 908, 878, 799, $732 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.19(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 12.26$ (s, 1H); ESI-MS: 153 $(\mathrm{M}+1)^{+}$.
2-Methyl-5-chlorobenzimidazole (3n). This compound was obtained as yellow solid; ir (KBr): 3415, 2971, 1624, 1545, $1400,1278,1059,921,804 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $2.62(\mathrm{~s}, 3 \mathrm{H}), 7.18(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.50 (s, 1H), 8.49 (s, 1H); ESI-MS: 167 (M+1) ${ }^{+}$.

5-Nitrobenzimidazole (30). This compound was obtained as yellow solid; ir (KBr): $3483,2814,1623,1590,1513,1464$, 1408, 1374, 1300, 1263, 1240, 1067, 952, 896, $741 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (400 MHz, DMSO-d d_{6}): $\delta 7.78$ (d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $8.12(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{~s}, 1 \mathrm{H}), 8.58(\mathrm{~s}, 1 \mathrm{H})$; ESI-MS: $164(\mathrm{M}+1)^{+}$.
2-Methyl-5-nitrobenzimidazole (3q). This compound was obtained as yellow solid; ir (KBr): 3561, 2923, 1684, 1627, 1593, 1516, 1471, 1356, 1216, 1065, 1022, 942, $879 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ $\mathrm{nmr}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.70(\mathrm{~s}, 3 \mathrm{H}), 7.78(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 8.19 (d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.48(\mathrm{~s}, 1 \mathrm{H})$; ESI-MS: $178(\mathrm{M}+1)^{+}$.

2-Butyl-5-nitrobenzimidazole (3s). This compound was obtained as yellow solid; ir (KBr): 3354, 2959, 1627, 1594, 1513, 1471, 1410, 1342, 1066, 1008, $882 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (400 MHz, DMSO- d_{6}): $\delta 0.89(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.42(\mathrm{sext}, \mathrm{J}=7.2$ $\mathrm{Hz}, 4 \mathrm{H}$) , 1.89 (quin, $\mathrm{J}=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.03(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 4 \mathrm{H})$, 7.59 (d, J = $8.4 \mathrm{~Hz}, 4 \mathrm{H}$), 8.18 (d, J = $8.4 \mathrm{~Hz}, 4 \mathrm{H}$), 8.48 ($\mathrm{s}, 2 \mathrm{H}$), 11.02 (s, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $_{6}$)): $\delta 13.85$, 22.62, 29.44, $30.29,111.89,114.38,118.68,138.46,142.90$, 143.64, 160.39; ESI-MS: $220(\mathrm{M}+1)^{+}$. Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, $60.26 ; \mathrm{H}, 5.98 ; \mathrm{N}, 19.17$; Found: C, $60.42 ; \mathrm{H}$, 6.05; N, 19.02.

2,2'-Dibutyl-1H,1'H-5,5-bibenzimidazolyl (5). This compound was obtained as colorless solid, mp 241-242 ${ }^{\circ}$; ir (KBr): 3415, 2930, 1728, 1630, 1575, 1542, 1415, 1276, 1085, 1026, $810 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 0.97(\mathrm{t}, \mathrm{J}=7.2$ $\mathrm{Hz}, 6 \mathrm{H}$), 1.41 (sext, J = 7.2 Hz, 4H), 1.81 (quin, J = 7.2 Hz, 4H), $2.88(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.47(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J}=8.4$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.69 (s, 2H); ${ }^{13} \mathrm{C} \mathrm{nmr} \mathrm{(100} \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OH}$): $\delta 14.88$, 22.19, 28.35, 30.24, 112.36, 114.44, 121.99, 136.71, 156.40; ESI-MS: $347(\mathrm{M}+1)^{+}$; Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{4}$: C, 76.27 ; H , 7.56; N, 16.17. Found: C, 76.08; H, 7.40; N, 16.36.

Acknowledgement. We thank the Science Foundation from Hebei Normal University (L20061314), the Nature Science Foundation of Hebei Province (B2005000151) and the Natural Science Foundation of Hebei Education Department (2006318) for financial support.

REFERENCES

[1a] Pozharskii, A. F.; Garnovskii, A. D; Simonov, A. M. Russ. Chem. Rev. 1966, 35, 122; [b] Valdez, J.; Cedillo, R.; HernándezCampos, A.; Yépez, L.; Hernández-Luis, F.; Navarrete-Vázquez, G.; Tapia, A.; Cortés, R.; Hernándezc, M.; Castilloa, R. Bioorg. Med. Chem. Lett. 2002, 12, 2221; [c] Zarrinmayeh, H.; Nunes, A. M.; Ornstein, P. L.; Zimmerman, D. M.; Arnold, B.; Schober, D. A.; Gackenheimer, S. L.; Bruns, R. F.; Hipskind, P. A.; Britton, T. C.; Cantrell, B. E.; Gehlert, D. R. J. Med. Chem. 1998, 41, 2709; [d] LaPlante, S. R.; Jakalian, A.; Aubry, N.; Bousquet, Y.; Ferland, J.-M.; Gillard, J.; Lefebvre, S.;

Poirier, M.; Tsantrizos, Y. S.; Kukolj, G.; Beaulieu, P. L. Angew. Chem. Int. Ed. 2004, 43, 4306; [e] Tan, R.-H.; Ding, L.-C.; Wei, X.-J. Chin. J. Med. Chem. 2001, 11, 259; [f] Tamm, I.; Sehgal, P. B. Adv. Virus Res. 1978, 22, 187; [f] Zhu, Z.; Lippa, B.; Drach, J. C.; Townsend, L. B. J. Med. Chem. 2000, 43, 2430.
[2] Figge, A.; Altenbach, H. J.; Brauer, D. J.; Tielmann, P. Tetrahedron: Asymmetry 2002, 13, 137.
[3] Fekner, T.; Gallucci, J.; Chan, M. K. J. Am. Chem. Soc. 2004, 126, 223.
[4a] Lu, J.; Ge, H.-G.; Bai, Y.-J. Chin. J. Org. Chem. 2002, 22, 782; [b] Elcalde, E.; Dinares, I.; Garcia, L. P.; Roca, T. Synthesis 1992, 395; [c] Dudd, L. M.; Venardou, E.; Garcia-Verdugo, E.; Licence, P.; Blake, A. J.; Wilson, C.; Poliakoff, M. Green Chem. 2003, 5, 187; [d] Lu, J.; Yang, B.-Q.; Bai, Y.-J. Synth Commun. 2002, 32, 3703; [e] Shi, Z.; Ta, J.-Y. Chin. J. Chem. 2000, 18, 940; [f] Tandon, V. K.; Kumar, M. Tetrahedron Lett. 2004, 45, 4185; [f] Charton, J.; Girault-Mizzi, S.; Sergheraert, C. Chem. Pharm. Bull. 2005, 53, 492.
[5a] Ma, H. Q.; Wang, Y. L.; Wang, J. Y. Heterocycles 2006, 68, 1669; [b] Li, Y.-Y.; Zhou, Y.-H.; Guo, Y.-F.; Sun, W.-G.; Li, Z.-Y.; Shi, D.-Q. Chin. J. Org. Chem. 2006, 26, 1097; [c] Sun, P.-P.; Hu, Z.-X. J. Heterocycl. Chem. 2006, 43, 773; [d] Gogoi, P.; Konwar, D. Tetrahedron Lett. 2006, 47, 79; [e] Moghaddam, F. M.; Bardajee, G. R.; Ismaili, H.; Taimoory, S. M. D. Synth. Commun. 2006, 36, 2543; [f] Itoh, T.; Nagata, K.; Ishikawa, H.; Ohsawa, A. Heterocycles 2004, 62, 197; [g] Itoh, T.; Nagata, K.; Ishikawa, H.; Ohsawa, A. Heterocycles 2004, 63, 2769; [h] Trivedi, R.; De, S. K.; Gibbs, R. A. J. Mol. Catal. A: Chem. 2006, 245, 8.
[6] Brain, C. T.; Steer, J. T. J. Org. Chem. 2003, 68, 6814.
[7] Villemin, D.; Hammadi, M.; Martin, B. Synth. Commun. 1996, 26, 2895.
[8] Heravi, M. M.; Montazeri, N.; Rahmizadeh, M.; Bakavoli, M.; Ghassemzadeh, M. J. Chem. Res. Synop. 2000, 584.
[9] Wang, L.-M.; Sheng, J.; Tian, H.; Qian. C.-T. Synth. Comтип. 2004, 34, 4265.
[10a] Zhang, Z.-H.; Liu, Q.-B. Prog. Chem. 2006, 18, 270; [b] Togo, H.; Iida, S. Synlett 2006, 2159; [c] Wang, H.-S.; Miao, J.-Y.; Zhao, L.-F. Chin. J. Org. Chem. 2005, 25, 615.
[11a] Wu, J.; Diao, T. N.; Sun, W.; Li, Y. Z. Synth. Commun. 2006, 36, 2949; [b] Varala, R.; Nuvula, S.; Adapa, S. R. J. Org. Chem. 2006, 71, 8283; [c] Han, R.; Son, K. I.; Ahn, G. H.; Jun, Y. M.; Lee, B. M.; Park, Y.; Kim, B. H. Tetrahedron Lett. 2006, 47, 7295; [d] Stavber, G.; Zupan, M.; Stavber, S. Tetrahedron Lett. 2006, 47, 8463; [e] Kidwai,
M.; Mothsra, P.; Bansal, V.; Goyal, R. Monatsh. Chem. 2006, 137, 1189; [f] Moghaddam, F. M.; Bardajee, G. R.; Ismaili, H.; Taimoory, S. M. D. Synth. Commun. 2006, 36, 2543; [g] Xia, M.; Lu, Y. D. Synth. Commun. 2006, 36, 2389; [h] Das, B.; Ravikanth, B.; Ramu, R.; Laxminarayana, K.; Rao, B. V. J. Mol. Catal. A: Chem. 2006, 255, 74; [i] Kataki, D.; Phukan, P. Indian J. Chem. 2006, 45B, 1759; [j] Das, B.; Reddy, K. R.; Ramu, R.; Thirupathi, P.; Ravikanth, B. Synlett 2006, 1756; [k] Phukan, P.; Kataki, D.; Chakraborty, P. Tetrahedron Lett. 2006, 47, 5523; [1] Ahmed, N.; van Lier, J. E. Tetrahedron Lett. 2006, 47, 5345; [m] Li, Y. C.; Zhang, J. M.; Dong, L. T.; Yan, M. Chin. J. Chem. 2006, 24, 929 ; [n] Kidwai, M.; Mothsra, P. Tetrahedron Lett. 2006, 47, 5029; [0] Yadav, J. S.; Balanarsaiah, E.; Raghavendra, S.; Satyanarayana, M. Tetrahedron Lett. 2006, 47, 4921; [p] Lin, X. F.; Cui, S. L.; Wang, Y. G. Tetrahedron Lett. 2006, 47, 4509; [q] Ponnala, S.; Sahu, D. P. Synth. Commun. 2006, 36, 2189; [r] Dong, L. T.; Li, Y. C.; Yan, M. Chin. Chem. Lett. 2006, 17, 733; [s] Bez, G.; Baruah,, N. Chem.. Lett. 2006, 35, 542; [t] Bosco, J. W. J.; Agrahari, A.; Saikia, A. K. Tetrahedron Lett. 2006, 47, 4065; [u] Zmitek, K.; Zupan, M.; Stavber, S.; Iskra, J. Org. Lett. 2006, 8, 2491; [v] Li, Y.; Wang, Y. L.; Wang, J. Y. Chem. Lett. 2006, 35, 460; [w] Pasha, M. A.; Jayashankara, V. P. Synth. Commun. 2006, 36, 1787; [x] Wu, J.; Sun, W.; Xia, H. G.; Sun, X. Y. Org. Biomol. Chem. 2006, 4, 1663; [y] Lin, X. F.; Cui, S. L.; Wang, Y. G. Tetrahedron Lett. 2006, 47, 3127; [z] Zhang, Z.-H.; Lin, J. Synth. Commun. 2007, 37, 209.
[12a] Zhang, Z.-H. J. Chem. Res. Synop. 2004, 753; [b] Zhang, Z.H. Monatsh. Chem. 2005, 136, 1191; [c] Mo, L.-P.; Ma, Z.-C.; Zhang, Z.-H. Synth. Commun. 2005, 35, 1997; [d] Zhang, Z.-H.; Song, L.-M. J. Chem. Res. 2005, 817; [e] Zhang, Z.-H.; Yang, S.-T.; Lin, J. Synth. Commun. 2006, 36, 1645; [f] Cui, Z.-S.; Zhang, Z.-H.; Liu, S.-F. J. Chem. Res. 2006, 390; [g] Zhang, Z.-H., Hu, J.-Y. J. Braz. Chem. Soc. 2006, 17, 1447; [h] Zhang, Z.-H.; Ma, Z.-C.; Mo, L.-P. Indian J. Chem. 2007, 46B, 535; [i] Zhang, Z.-H.; Li, T.-S.; Li, J.-J. Catal. Commun. 2007, 8, 1615; [j] Zhang, Z.-H.; Li, T.-S.; Li, J.-J. Monatsh. Chem. 2007, 138, 89.
[13] Hölljes, Jr., E. L.; Wagner, E. C. J. Org. Chem. 1944, 9, 31.
[14] Murray, M.; Ryan, A. J.; Little, P. J. J. Med. Chem. 1982, 25, 887.
[15] Willitzer, H.; Braeuniger, H.; Engelmann, D.; Krebs, D.; Ozegowski, W.; Tonew, M. Pharmazie 1978, 33, 30.
[16] Ries, U. J.; Mihm, G.; Narr, B.; Hasselbach, K. M.; Wittneben, H.; Entzeroth, M.; van Meel, J. C. A.; Wienen, W.; Hauel, N. H. J. Med. Chem. 1993, 36, 4040.

